

○ Overview:
○ what specific aims we had at ORNL
○ revisit what Docker is and reiterate a couple of important points after

Rolf’s talk
○ a summary of how we’ve set up Docker at ORNL
○ a current status report

○ Some cross-over with my poster, so hopefully this won’t be too redundant

1. Automate the installation of ICAT and cut down on manual steps since manual
steps are error prone, and it’s easy to get lost or lose track of where you are
when there are lots of steps.

2. Expand the coverage of version control by capturing ICAT configuration in Git,
but also the actual installation process of ICAT as well. This is a big deal,
since I’m a software dev who writes code, and I accept nothing less than full
version control with code so why accept anything less for configuration and
installation?

1. Make it (really) easy to spin up an instance of ICAT, so If I’m developing an
application that uses ICAT, it would be nice to have:

a. A local instance of ICAT sitting on my own machine so that I can run
tests against it and have something to “program against” directly

b. Disposable, short-lived instances of ICAT for CI.
2. Finally I’d like to have all instances of ICAT consistent with each other, as far

as possible
a. If I’ve spent time getting something configured locally, or on a test

server, I want that work to count everywhere.

1. Rolf covered this, but I want to reiterate the key point that...
a. ...Docker containers are roughly analogous to virtual machines in that

they allow applications to run inside isolated environments that you
have complete control over

b. But the difference is that they are extremely lightweight, so
i. Can be spun up in fractions of a second
ii. Don’t impact performance

2. Image from poster shows VMs on the left, containers on the right:
a. VMs have to carry an entire OS around with them, which is a lot of

baggage
b. Containers share a lot of their OS with the host, which is already

running

Another image taken from my poster that shows the basic components of our
current ICAT stack and what goes into producing it.

At the bottom is the general layout, with containers for:
The ICAT server
An API we’ve set up that wraps the ICAT REST API (more about

that later in the site report)
NGINX
MySQL database used for test instances of ICAT stacks
Logstash for parsing logs and sending them to graylog.

And they are a product or function of all the stuff at the top:
Requirements and dependencies:

Java
Glassfish
DB connectors

Zipped-up ICAT components
Location-specific (situation-specific) configuration
Credentials

… Which are all pulled together by the Dockerfile to create an image which is run
inside of a container.

One thing I hope is clear is ICAT stacks are now completely disposable -- they’re
a function of everything in version control!

No more worrying about whether or not you can easily reproduce what you have

once you’ve gotten it working.

Yet another image from my poster showing an overview of our workflow for
ICAT-related development / deployment

Starts on the left where a developer wants a local instance of ICAT:
They pull down the code for the first time using git

Then one or two commands away from building and deploying an
ICAT stack

A trivial step!
They can make any changes they want

Changes can be things like updated dependencies or ICAT
modules, changed configuration, a different setup

and crucially, test them locally and see the result of their changes
quickly

Changes are commited to Git and then pushed up to GitLab
Changes are then pulled down automatically by Jenkins and then all automated

tests are run:
Note that these tests cover everything! They cover installation,

configuration, make sure everything is working together correctly.
Made possible by the complete automation process.

Once we’re happy with everything and ready to deploy, we can then SSH onto the
production boxes, then:

Completely delete the ICAT stack.
And then deploy a brand new ICAT stack.

This is stress-free and should -- at least in theory -- be very straight
forward since the process is automated.

At the moment our Docker setup is for SNS and HFIR only.
In principle this could be made more generic, but would take some work.

We’d have to extract the ICAT server part of things (not logstash,
nginx, etc)

Perhaps a collaboration with Rolf would be a good idea
The code is not public yet. It’s hosted on a local GitLab instance at the lab.

Credentials aren’t in the repo, but ORNL-specific stuff is.
Disclaimer for the sake of honesty:

While we do have this setup deployed to production, it is not currently
doing anything and has not been battle tested.

It has, however got a test suite to make sure things are fitting together as
we expect.

