
Locking in IDS

Rolf Krahl

ICAT Meeting @ 11th NOBUGS, Copenhagen, October 2016



Introduction and Rationale

Remember Issue # 47: “Race condition: DsWriteThenArchiver
may start while put call is in process.”
Cause was concurrency of a background task and an incoming
web service call. Impact was possible loss of data.

Observations from discussion in the issue report:
FiniteStateMachine takes care that never more then one
background task operates on the same dataset at any time.
Less protecion from conflicts between background tasks and
incoming web service calls.
Other cases of conflicting access found, but most of them mostly
harmless. Not sure to have checked all possible cases though.
Different mechanisms to prevent conflicts in place. Impression:
code already too complicated yet still not complete.
Review of locking in ids.server might be advisable.

Rolf Krahl (HZB) Locking in IDS 2 / 9



Introduction and Rationale

Remember Issue # 47: “Race condition: DsWriteThenArchiver
may start while put call is in process.”
Cause was concurrency of a background task and an incoming
web service call. Impact was possible loss of data.

Observations from discussion in the issue report:
FiniteStateMachine takes care that never more then one
background task operates on the same dataset at any time.
Less protecion from conflicts between background tasks and
incoming web service calls.
Other cases of conflicting access found, but most of them mostly
harmless. Not sure to have checked all possible cases though.
Different mechanisms to prevent conflicts in place. Impression:
code already too complicated yet still not complete.
Review of locking in ids.server might be advisable.

Rolf Krahl (HZB) Locking in IDS 2 / 9



Analysis

Consider a two level storage with write access and storage unit
Dataset.
Separate threads are launched in IDS for:

web service calls that may come in at any time,
deferred operations run by the DsProcessQueue within the
FiniteStateMachine,
maintenance tasks: FileChecker and Tidier.

Conflicts may arise when more then one thread accesses the same
dataset in main storage at the same time.
No conflicts in archive storage. FileChecker and Tidier don’t seem
to cause conflicts either.
Current mechanisms to prevent conflicts:

Deferred operations are queued, no more then one may operate
on the same dataset at any time.
Some locking to hold back certain actions, see next slide.

Rolf Krahl (HZB) Locking in IDS 3 / 9



Analysis: Locking

The FiniteStateMachine maintains two sets of locks,
deleteLocks and archiveLocks. By design, locking does only
protect against two specific actions, the delete web service call
and starting the DsArchiver.
Design pattern: “Check lock before action”. This is a potential
race condition.
Only the web service calls delete, getData, and put set a lock.
Deferred operations are not protected.
Locks are set on selections, not on individual datasets. This
makes checking for a lock complicated.

Rolf Krahl (HZB) Locking in IDS 4 / 9



Proposal: Standard Resource Locking

Keep the DsProcessQueue as is.
Replace the current locking by standard resource locking:

Locks are created on Datasets.
One singleton to obtain the locks from.
Two types of locks, shared and exclusive, with the obvious
semantics.
Only one method, lock(DsInfo dsInfo, boolean shared). It
returns an AutoCloseable that releases the lock on close.
lock() should be non-blocking. It should throw an exception if
the lock is not available.
No isLocked() method!
(Almost) any operation acting on a dataset in main storage
should acquire a lock.

For convenience, a method to acquire a lock on a DataSelection
rather then on a single Dataset may be coded on top of that.

Rolf Krahl (HZB) Locking in IDS 5 / 9



Proposal: Standard Resource Locking

The FiniteStateMachine acquires a lock before starting the thread
for a deferred operation. The lock is handed over to the thread
and closed by it when done. If acquiring the lock fails, the thread
is not started and the operation remains in the queue.
Web service calls mail fail if they can’t aquire a lock. A new
DataTemporaryNotAvailableException will be thrown in this
case. (Or even a DataNotOnlineException.)

Rolf Krahl (HZB) Locking in IDS 6 / 9



Locking in the File System and Direct File Access

Further option that could build on top of the proposal:

Talk on direct file access to storage at last F2F meeting
With sufficient precautions, direct read only file access to the
main storage concurrently to the IDS server can be made safe.
Somewhat inefficient: acquiring and releasing the lock for each
single file access from IDS.
Further improvement would require changes in the IDS server and
to the plugin API.

The present proposal on internal locking in IDS can be combined
with file system locking in the storage plugin.
Requires one additional plugin call.

Rolf Krahl (HZB) Locking in IDS 7 / 9



Optional Storage Plugin Call

Add a call lock(DsInfo dsInfo, boolean shared) to the
main storage plugin. It will be called each time a lock is about to
be acquired and should return an AutoCloseable. It will be
closed by the close method of the lock. It should not block, but
may throw an exception if the lock could not be acquired at
storage level.
Storage plugins not willing to implement this may add a dummy
implementation that simply returns null instead.

Rolf Krahl (HZB) Locking in IDS 8 / 9



Conclusion

Resource based locking is a well established design pattern that
has proven to be reliable in many applications if implemented
correctly.
It could replace the current action based internal locking in
ids.server.
This would simplify the code and fix remaining race conditions
that are still present.
As a further option, this could be combined with file system
locking in the storage plugin to allow external processes to access
the main storage in a safe way.

Rolf Krahl (HZB) Locking in IDS 9 / 9


