
Data Download

(and Upload)

NOBUGS 2012 ICAT Workshop

27th September 2012

Kevin Phipps

Scientific Computing Department, RAL

Overview

• Handling files in ICAT

• Why a data server is needed

• Proposal for a Data Server Interface Specification

Where are the data files?

• The files themselves are NOT stored in ICAT

• In ICAT a Datafile ‘location’ field is typically relative

path to the actual file on disk eg.
Investigation123/dataset456/datafileName.ext

• The problem:
 - Dangerous to open up an area of the file system to all users of ICAT

 - Not practical to have each ICAT user set up as a user on the OS and

control file permissions that way

• A ‘Data Server’ component is needed

Data Server

• Currently a custom “Data Server” needs to be written

to store, retrieve and delete the files and to

communicate with ICAT for authorisation purposes

 - requests sent directly to data server

 - authorisation checked with ICAT

 - file stored, removed or returned

 - ICAT Datafile entry added or removed

Existing Data Servers

• 4 facilities at RAL all have their own implementations

• TopCat needs a ‘download manager’ written to

interface with each of these data servers

• A common specification is highly desirable

• A fairly generic ICAT Data Server (IDS2) is in use on

one of our projects. We intend to modify it to meet the

specification and make it available as a reference

implementation.

Data Server Interface

Specification
• Includes calls to:

- store individual data files

- retrieve, query status of, delete groups of data files

• Does not define how groups of files will be returned

(facilities may have specific requirements on this)

• Recommendation for zip file format which will be

included in reference implementation

ICAT Coupling

• ICAT session ID passed as argument to most calls

• For data retrieval requests the data server must

check for Read permissions in ICAT

• For put and delete requests it must check for Create

and Delete permissions and make corresponding

changes in ICAT

• Consistency with ICAT must be maintained – orphan

file preferred to an ICAT entry with no corresponding

file

Web Service Style

• Web service specification follows “REST” guidelines

• HTTP methods PUT, DELETE, POST and GET used

• POST supported in addition to GET for requests

where URLs would become too long

• Calls taking parameters investigationIds, datasetIds

and datafileIds use a comma separated list

Dual Storage Model

• Based on assumption that there is a (fast) local

cache of recently used data and a (slower) archive

system

• Implementation needs to manage the cache of local

files

• If one storage device is fast enough and large

enough to hold all the data then this complexity is not

required (but still follow the model)

1) Upload a file to data server

• put

• http method: PUT

• request header fields: sessionId, name, location, description, fileSize,

doi, checksum, datafileCreateTime, datafileModTime, datafileFormatId,

datasetId

• return: string representation of the id of the created datafile

- The body of the servlet request is the contents of the file to be stored

 - Implementation also registers the file in ICAT

 - datafileModTime and datafileCreateTime must be in the format YYYY-

MM-DD hh:mm:ss

 - Create permission is required

2) Delete file(s) from data server

• delete

• http method: DELETE

• parameters: sessionId, investigationIds, datasetIds, datafileIds

 - Deletion of investigations, datasets and datafiles causes the

contained components to be deleted both from the dataserver and from

ICAT

 - Delete permission is required

3) Get / download file(s)

• getData

• http method: GET

• parameters: sessionId, investigationIds, datasetIds, datafileIds,

compress

• return: the requested datafile or datafiles.

 - If some or all of the data are not on fast storage the implementation

should commence retrieval of the data and attach an exit code to the

response.

 - compress may have the value 1 to indicate a high degree of

compression, 0 to indicate none and if omitted the level of compression

is implementation defined.

4) Remove file from local storage

• archive

• http method: POST

• parameters: sessionId, investigationIds, datasetIds, datafileIds

- Archiving of investigations, datasets and datafiles is a hint that the

datafiles may be moved to storage where access may be slower

 - Read permission is required. This is because there is no risk to the

data, an archiving request can at most delay access.

 - For a single fast storage setup this method needs no implementation

5) Make files available

on local storage
• restore

• http method: POST

parameters: sessionId, investigationIds, datasetIds, datafileIds

 - Restoration of investigations, datasets and datafiles is a hint that the

datafiles be moved to storage where access is faster

 - Read permission is required.

 - For a single fast storage setup this method needs no implementation

6) Get status of data

• getStatus

• http method: GET

• parameters: investigationIds, datasetIds, datafileIds

• return: a string with:

 - ONLINE if all requested items of data are available on fast storage

 - RESTORING if data has been requested but is not available yet

 - ARCHIVED if data is not on the fast storage and has not been requested

 - This does not require a sessionId so no permissions are required.

 - For a single fast storage setup ONLINE can always be returned

Summary

• ICAT does not store the actual files

• Some kind of data server needs to be implemented

• Needs to respect ICAT permissions

• A reference implementation will be available soon

• If all implementations follow the common

specification then tools using multiple ICATs will

benefit

• Only 6 methods to implement (3 if using one single

storage solution)

