
ICAT Deployment at HZB

Rolf Krahl

ICAT F2F Meeting, RAL, November 2017



Outline

1 ICAT Deployment with Docker

2 Data Ingestion into IDS

Rolf Krahl (HZB) ICAT at HZB 2 / 11



Overview

Storage system: HSM providing
file systems /incoming, /main,
and /archive.
/archive comprises disks and
tapes, /incoming and /main
only disks.
Two dedicated server for ICAT to
ensure availability.
Use Docker inside the server.
Use separate containers for
MySQL database, Payara with
ICAT compononts, and Apache as
frontend, respectively.

jazz01

Apache

Payara

MySQL

jazz02

Apache

Payara

MySQL

/incoming /main /archive

Rolf Krahl (HZB) ICAT at HZB 3 / 11



Deployment Alternatives

Active/passive: all services on one
server, the second server is either
in idle standby or in maintenance.
Distributed services: in normal
operation use both servers to
separate services. One server for
user operation (TopCAT), one
server for IDS and ingest.
Use network to route traffic to
the appropriate server.

jazz01

Apache

Payara

MySQL

jazz02

Apache

Payara

MySQL

/incoming /main /archive

Rolf Krahl (HZB) ICAT at HZB 4 / 11



Deployment Configurations

Need to provide three different configurations:
1 All ICAT components in one server
2 One server with ICAT, Lucene, and IDS, no TopCAT
3 One server with TopCAT and ICAT, no Lucene, no IDS

Rolf Krahl (HZB) ICAT at HZB 5 / 11



ICAT Docker Image

Have one generic ICAT docker image with all components
installed.
In the image, Payara is installed, but not set up. The Payara
domain is deleted.
A setup script creating and configuring the Payara domain is run
during startup of the container if the domain is not present.
If the domain is present, the setup script only starts Payara with
the given domain. This allows to stop and to start the container
without creating the domain again each time.
A configuration directory is linked into the container by a bind
mount. This external configuration controls which ICAT
components to install in Payara and contains all configuration
files for the components.
This way, one single image will work for all possible deployment
configurations. Furthermore, the image does not contain any
secrets, such as database passwords.

Rolf Krahl (HZB) ICAT at HZB 6 / 11



Data Ingestion Preconditions

Some 40+ experimental stations at BESSY II
Very heterogenous, different workflows, different control systems,
different operating systems
Users bring their own experimental station
Only a small number of high data volume producers
Consequence: setup a generic workflow with very low prerequisites
at the instrument side. Treat the few high volume producers
individually.

Rolf Krahl (HZB) ICAT at HZB 7 / 11



Generic Workflow

Setup an incoming area in central storage for ingestion.
Instruments communicate with central systems by simple web
service calls.
One call to start ingestion, taking investigation identifier as
parameter. It creates a dedicated SMB share in the incoming area
and returns path and credentials.
Instrument mounts the share and stores the data.
Second call to finish, take name of the share as parameter. It
transfers the data to IDS and removes the SMB share.
Only requirement at instrument side: ability to make web service
calls and to mount SMB shares.
Python scripts to make the calls are provided as an option.

Rolf Krahl (HZB) ICAT at HZB 8 / 11



Ingestion Variant I: Write to Archive Storage

Variant I to transfer the data from the incoming area to IDS:
Workflow:

1 Write a ZIP file per dataset in IDS archive storage.
2 Create the dataset object along with the datafile objects in ICAT.

Notes:
Need to protect against concurrent file access by IDS: see my talk
from March 2015 F2F meeting for technical details.
Need to adhere to the IDS internal structure when creating the
ZIP file in archive.
Works with the current version of ids.server and some
modifications in the plugin.

Rolf Krahl (HZB) ICAT at HZB 9 / 11



Ingestion Variant II: Storage Plugin Reads Incoming

Variant II to transfer the data from the incoming area to IDS:
Modified storage plugin: MainStorage looks for files in two places,
main storage and incoming area.
Plugin should access incoming area read only to protect against
concurrent file access.
Workflow:

1 arrange the files in incoming such that the plugin will find them.
2 Create the dataset object along with the datafile objects in ICAT.
3 Trigger a WRITE operation to create the archive file.
4 Remove the files from incoming.

Note: there is currently no WRITE API call in IDS (but a pending
pull request to add it).

Rolf Krahl (HZB) ICAT at HZB 10 / 11



Ingestion Variant III: Write to Main Storage

Variant III to transfer the data from the incoming area to IDS:
Workflow:

1 Copy the datafiles to IDS main storage.
2 Create the dataset object along with the datafile objects in ICAT.
3 Trigger a WRITE operation to create the archive file.

Notes:
Must protect against concurrent file access by IDS in main
storage! This is currently not possible, but see my proposal on file
system locking in the IDS storage plugin.
There is currently no WRITE API call in IDS.

Rolf Krahl (HZB) ICAT at HZB 11 / 11


	ICAT Deployment with Docker
	Data Ingestion into IDS

