
Ideas
20/21 Nov 2017

Steve Fisher
<dr.s.m.fisher@gmail.com>

mailto:dr.s.m.fisher@gmail.com

Warning

● I am presenting a set of ideas:
○ I won't have to implement them
○ They are not necessarily consistent with each other
○ Some are very disruptive - but not necessarily crazy

Problems to be addressed
● “Everybody” is happy with Datafiles but some find

Datasets inconvenient
○ Hierarchies: bad, trees: good
○ DLS and CLF mainly want a file system

● DataCollections are important for DOIs and provenance
but don’t have unique names

● Currently ICAT accepts almost any JPQL query and the
authz makes it worse
○ RDBMS should be able to cope but sometimes on huge tables Oracle

decides to scan the entire table
○ Need to add ad-hoc indices to cope with problems

● Information in lucene duplicates that in RDBMS

Eliminate all unused entities and
attributes

● Candidates include: Study, Publication, Keyword
● It would require a survey of facilities to identify what to

remove

● Simpler schema ● ?

Rename Investigation to Visit and
introduce Proposal/Investigation

● Hierarchical structure becomes
more regular and redundancy is
avoided.

● Each entity identified by a name
relative to its parent

Facility

Dataset

Proposal

Datafile

Visit

Facility

Dataset

Investigation

Datafile

● Affects almost all applications

Add count of datafiles and total size
of datafiles to datasets and all the
way up the hierarchy to the facility.

● Speeds up some queries ● Slows down writing as adding,
updating or deleting a datafile
would also update the dataset
and everything above it.

● It breaks normalisation and
allows the database to become
inconsistent.

● File systems don’t do it - and I
don’t believe that we should.
Unix uses du.

Get rid of the Dataset and replace it
with a Directory which may contain
other Directories or Datafiles.

● Investigations (visits) would now have a one to many relationship to a directory.
● A directory would be in exactly one investigation or directory
● A directory may contain soft/symbolic links to a directory or datafile or hard links to a

datafile (with normal file system semantics).

● Directly addresses the needs of
those who want a file system
view

● Much more flexible.
● Would no longer need

DataCollections and
RelatedDatafiles leading to a
much simpler and more flexible
model.

● Fits reasonably with Authz
model - though may need some
extension to say “everything
below a node”

● Applications need to be
changed

● It might require calls analogous
to unix find and du commands

● There is a lot to think through!

Remove Datafile and
Dataset/Directory from RDBMS.

● Why? - much influenced by DLS and CLF
○ Facilities especially those already having data - want a file system

view and putting datafiles into ICAT Datasets is a nuisance. They only
care about the Datafile.location.

○ The Datafile table is huge
■ Leads to possibility of very slow queries

○ DLS currently have an auxiliary table outside ICAT even bigger than
the datafile table to offer a file system view of ICAT data (FUSE).

○ Most facilities actually have very little metadata.
○ Large facilities generally have a two tier IDS

■ The archive layer offers a file system view - possibly implemented
with a huge table to locate a Datafile on tape.

○ ICAT currently provides little else except the ability to store metadata
as DatasetParameters and DatafileParameters etc.

● How?
○ See next slide ...

Solution 1
● Use ICAT RDBMS for everything down to the visit/investigation. The visit

would then have a location field which would identify a top level directory
for use by that visit. This would make the RDBMS of ICAT very small. With
this model a datafile would exist if in either main or archive IDS storage

● Authz could be represented by ACLs in the file system
● Webdav interface will be trivial
● Metadata:

a. could use extended file attributes (indexed by lucene). However note
the OS dependent behaviour of such attributes and size restrictions.

b. could use RDBMS for metadata (indexed by lucene).
c. could use lucene. Today lucene does not store the data it indexes

but only the id of the object. If we chose to store the data that
was indexed would have little reason to store metadata
elsewhere. Would also index on location to find metadata
associated with a Datafile.

● TopCAT could look almost like now except that drill down is by directory
structure (old location)

● IDS can look similar on the outside
● ICAT very different

Solution 2

● Eliminate the RDBMS and use a directory structure with ACLs to represent
facility/proposal/visit.

● Use small set of directory structures to allow TopCAT to work.

● I like solution 2 on top of 1c:
○ No RDBMS.
○ Use file system
○ Use lucene
○ No redundancy

● Conceptually very simple
● Avoids scaling problems

● Huge change - but worth
thinking about

?
?

?
?

